I-7

MULTINUCLEAR NMR STUDIES ON CF₃ SUBSTITUTED SULFUR, SELENIUM AND TELLURIUM COMPOUNDS

W. Gombler

Ruhr-Universität Bochum, Anorganische Chemie II, D-4630 Bochum (F.R.G.)

A systematic investigation of thirty-four $CF_3Se(II, IV)$ and eight $CF_3Te(II, IV)$ compounds by ^{13}C , ^{19}F , ^{77}Se and ^{125}Te NMR spectroscopy resulted in some general features for chemical shifts and coupling constants which agree with the trends of reported ^{19}F and new ^{13}C NMR data of $CF_3S(II, IV)$ compounds. Moreover, the NMR spectra of molecules of the type E=CXY (E=chalcogen, X, Y=halogen) and substances containing a C=Se double bond have been studied. From the comparison of these NMR data with those of CF_3 substituted chalcogen compounds, a partial double bond character of the carbon-fluorine and carbon-chalcogen bond in CF_3 substituted chalcogen compounds can be derived:

$$F_3C-E-R \longrightarrow F^{-1}\begin{bmatrix} F_{\downarrow} & \cdots & E-R \end{bmatrix}^+$$

I-8

TRIFLUORMETHYLISONITRILE CF₃NC, VERSATILE LIGAND IN METAL ORGANIC CHEMISTRY

D. Lentz

Institut f. Anorganische und Analytische Chemie, Freie Universität Berlin, Fabeckstrasse 34-36, 1000 Berlin 33 (F.R.G.)

Although isonitriles and their transition metal complexes have been discovered about one century ago, the first synthesis of Trifluoro-methylisonitrile has been published in 1967 by Makarov et al. But except for the —addition of bromine no further reactions have been investigated.

The high yield synthesis of $\mathrm{CF_3NC}$ will be described in detail. Preparation and structural investigations on the new complexes $(\mathrm{CO})_5\mathrm{CrCNCF_3}$, $(\mathrm{CO})_5\mathrm{WCNCF_3}$, $\mathrm{Ni}(\mathrm{CNCF_3})_4$ are given. Especially the vibrational spectra of $(\mathrm{CO})_5\mathrm{Cr}(\mathrm{CNCF_3})$ and $(\mathrm{CO})_5\mathrm{WCNCF_3}$ differ very much from those of the nonfluorinated species. They are nearly identical to those of the hexacarbonyls and thus give a strong hint that trifluoromethylisonitrile as a ligand